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M A G N E T O S O N I C  ANALYSIS  AND T H E  M E T H O D  F O R  D I A G N O S T I C S  

OF E X P A N S I O N  OF A P L A S M A  CLOUD IN A M A G N E T I Z E D  B A C K G R O U N D  

S. A. Nikitin and A. G. Ponomarenko UDC 533.95 

The problem of sub-Alfvin ezpansion of a superconducting plasma sphere in a homogeneous 
magnetized background is considered. The specifics of a self-consistent model of a low-frequenc~j 
linear MHD approzimation that we used in the present paper is the simultaneous allowance for 
the energy necessary for maintaining the field and plasma equilibrium at a moving boundary 
and the additional perturbation of a decelerating field generated by the currents induced in a 
background plasma. This has allowed us to clarify significantly the dependence of the radiated 
magnetohydrodynamic energy on the Mach-Alfv~n number. We found and calibrated universal 
dynamic characteristics on the basis of which we developed new techniques for determining the 
initial energy and the velocities of ezpansion of an ezplosive plasma cloud with the use of the peak 
values of magnetic signals in the near ( quasistatic), transient, and wave zones. The possibility 
of effective application of these techniques in e.zperiments on laser-plasma cloud generation in 
a vacuum homogeneous magnetic field is shown. 

In t roduc t i on .  The conditions under which the  expansion of a plasma cloud produced by a space 
explosion occurs [1] and also the conditions under which laboratory experiments with a laser plasma in 
magnetic fields [2] occur, can assume the presence of a magnetized background, which should lead to marked 
variations in the shape and quantitative characteristics o-f magnetic signals recorded far from the cloud in 
comparison with the vacuum case [3]. For analysis of the influence of a background plasma on the expansion 
dynamics, it is convenient to use a low-frequency linear MHD approximation [4], in which the magnetosonic 
mode of perturbations generated in the medium is fundamental. 

With a view for developing the magnetoprobing method of determining the explosion parameters, 
we consider, within the framework of the above-indicated approximation, the known problem of expansion 
of a superconducting plasma sphere in a homogeneous medium with a magnetic field B0 for small Mach- 
Alfv6n numbers/~ = Vo/VA < 1 ( ~  is the initial velocity of the sphere and VA is the Alfv6n velocity in the 
background). At present, the interest in this problem, which was posed as long ago as during the first high- 
altitude explosions, is given a new impulse in connection with the formation of a new direction of research 
concerning the possibility of application of explosive methods to protect the Earth against asteroids [5, 6]. 

Considering MHD-wave generation by an ideally conducting sphere which first uniformly expands in the 
background with velocity I6 and then instantly stops, Lutomirsky employed a low-frequency approximation 
[4]. 

Belov et al. [7] found MHD perturbations in a homogeneous background by a special law of the rate 
of variation in the sphere radius in the form of a quadratically decreasing function of time. In [8], Belov et 
al. calculated the approximate shape of the deceleration boundaries of a plasma in a high-altitude explosion 
in the self-consistent formulation of the problem with allowance for scraping of the background particles. 
However, in our opinion, the energy required to maintain the dynamic plasma and field equilibrium was not 
inchded in the energy balance in [8]. 
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Gorbachev [9] obtained analytical solutions for magnetosonic perturbations and Alfv~n waves generated 
by them in the approximation of small values of the magnetic Reynolds number, i.e., for a cloud with a 
magnetic field completely penetrated into it and finite conductivity. Such an approach can be justified at the 
late stage of expansion of an explosive plasma cloud rather than at the initial stage, which has a strictly 
expressed diamagnetic character and to which a "superconducting" model corresponds to a greater extent. 

In describing the cloud dynamics at the stage of its expansion, where the cloud still has a spherical 
shape, the approach that we consider is close to that used in [10]. The basic difference is that, in [10], the 
decelerating fields at the plasma boundary were assumed to be such as that in vacuum, although the problem 
of the determination of perturbations under background conditions was solved. 

Thus, despite the fact that the problem in the simple formulation indicated above has already been 
investigated by many authors, it is not yet solved completely, because all necessary conditions for the field 
and the moving plasma have not been taken into account simultaneously. No exhaustive recommendations for 
practical use of the results of theoretical and numerical analyses have been given. 

The aim of the present work is a step-by-step account of the self-consistent character of motion 
in calculating the shapes of magnetic signals under the conditions of low-frequency perturbations of a 
homogeneous background medium at the diamagnetic stage of plasma expansion in order to obtain new 
methods of recovering, on the basis of these signals, the initial data on the energy E0 and velocity V0 of the 
plasma products of an explosion (their mass M0 is estimated on the basis of the found ~0 and V0: Mo '~ ~o/V2). 
Since ~ < 1, we ignore the effect of background scraping (on the characteristic scale of deceleration, the scraped 
mass is small compared with the initial mass of the cloud M0). 

Magnetosonic M o d e l  of Dece le ra t ion  of a P l a s m a  Sphere .  In the approximation considered, 
the basic form of MHD perturbations axe magnetosonic waves, isotropically diverging from a sphere with 
velocity VA. In a spherical coordinate system p, 0, ~a with the origin in the center of the sphere and the polar 
axis along the field B0, the solution of a wave equation, which corresponds to a "magnetic sound," yields the 
known expression for the vectorial magnetic potential [4]: 

A = A ~ e ~ = B ~  2 r2 f ~ ]  sin Oe~,, (1) 

which is represented in the given geometry only by the azimuth component A~ (e~ is the azimuthal basis 
vector) and depends on the generalized variable r/-- v - fir, in which the dimensional coordinates of space 
p and time t are replaced by the dimensionless r = p/Rb and ~ = t/T~. Here P~ = (3~o/B2) 1/3 and 
Tb = Rb/l~ are the characteristic scale and time of deceleration of the plasma sphere with the initial kinetic 
energy of dispersion C0 in a vacuum magnetic field B0 [3], the function f(~?) describes the structure of 
perturbations, and f = df/d1?. In accordance with the boundary conditions, on the surface of an ideal moving 
conductor, we have Ar = 0 at r = a(~') (a is the radius of the sphere in terms of P~). Thus, the function f(q) 
satisfies [see (1)] the differential equation 

f ' +  f a2 - 0 (2) 

under the initial conditions f(0) = f (0 )  = 0, which follow from the requirement of the continuity of the 
field A in the spherical front of perturbations with radius p = VAt (q = 0), outside of which the field is 
homogeneous and has the potential A(p > VAt) = B0 x epp/2. 

For a given dependence of the sphere velocity V on time, in particular, for rectangular (t < 0 and 
V = 0; 0 < t < Tb and V = V0 = const; and t > Tb and V = 0) and quadratic dependences, the form of the 
function f(q) was found in [4, 7]. In our approach, it is required to solve (2) together with the equation of 
motion of a sphere. 

The perturbed field on the sphere Bs = BIr=a = rotAIr=a determines the magnetic pressure B2/8~r, 
in the overcoming which the plasma performs work. With allowance for the integration over the angular 
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dependence of pressure, the latter can be written in terms of E0 as 
a 

W ~- f Q2a2da, 
0 

where Q = [Bs[/B0 is the factor of field "amplification" on the magnetic equator of the sphere (0 = ~/2). In 
a vacuum field, as is known [3], we have Q = 3/2 = const. The model used takes into account that  Q is a 
fimction of r / in a magnetized background. With allowance for relation (2), it follows from the 0 component 
of the magnetic field at the boundary that  

The equation for the rate of variation of the sphere radius in t ime can be derived in a form similar to 
the equation in a vacuum field [3]: 

da 2 a~ 
~'r = 9 " =  ~/1 - W - 5 Q " (3) 

The first term on the r ight-hand side of (3) is determined by energy losses because of plasma deceleration. The 
second term describes the dynamic  bMance of the gas and magnetic pressures at the moving boundary. After 
the deceleration ends (da/dr ~ 0), the square of this te rm characterizes the amount  of energy remaining in 
the sphere and needed to maintain  equilibrium. 

Equations (2) and (3) lead to the self-consistent dynamic system 

df f a 2 da 9" dW = Q2 a2 da 
d'-~ = - ~"'~ 4- "~, d"~ = 1 - ~-"--~' d~ "~g ' (4) 

the integration of which in the  region of variation of the variable T / -  r - / ~ a  > 0 allows one to determine the 
perturbation s tructure and the  law of motion for/~ < 1. For r / =  T/0 --* 0, the system has a singularity, and, 
therefore, the relations 

a(r/0 ~ 0) - 1 - ~ '  f(~/o --* 0) = (1 -- ~)2(1 § 2/3)' g (1 --/3)s(1 4- 2~) 2 

are used as the initial conditions (4). The  quanti ty Q is found at each integration step from the algebraic 
equation 

(4 /3Vg)  flag/~Q 2 + 2a3(1 - ~ / 1  - W)Q = f + 2a 3, 

derived on the basis of the  determinat ion of Q via f f  (see above) with the use of (2) and (3). 
The specifics of our approach consists in the simultaneous account of both the  energy necessary for 

maintaining field and plasma equilibrium at the moving boundary and the additional per turbat ion of the 
decelerating field at this boundary  because of the currents induced in a background plasma. We note that  
in the papers [8, 10], in which the  formulation of the problem is similar to ours, each of the two important  
factors is considered separately. Below, we illustrate it by a numerical example. 

R e s u l t s  o f  N u m e r i c a l  S i m u l a t i o n .  Figure 1 shows the ult imately at tainable radius of the sphere 
am on the parameter /~.  In a sub-Alfv~n regime (/~ < 1) and in a linear approximation up to j8 = 0.9, the 
background has an insignificant effect on the deceleration radius because of an abrupt  dependence of another 
important  parameter  on it, namely, the energy El of the  dipole magnetic moment  which is induced in the 
cloud and is determined by the  surface density of the current on the sphere (c/4~r)QBo sin 0 (c is the velocity 
of light). In terms of E0, this energy can be written as 

1 ~.I ~-- ~ Q a3 (5) 

[after completion of the transient  processes of sphere-medium interaction, Q ---, 3/2, a --~ am, and El ---' 
(4/5)E0, which corresponds to the "vacuum" expressions of these quantities]. Variation of El as am decreases 
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occurs owing to an increase in energy losses of the cloud for generation of magnetosonic perturbations ER. 
For the radiated MHD energy, the following expression was obtained in terms of s 

1 
1 - B Y  (6) 

P1ecisely this expression is used in numerical calculations. Integration is performed over the generalized 
variable T/= r - / 3 a ,  together with integration of the above-considered system which describes the field and 
sphere dynamics. This is taken into account by the kinematic factor (1 - / ~ - ) - 1 .  Figure 1 shows calculated 
dependences of the relative amount of radiation-induced losses s163 + s and am on/~. For comparison, 
we give the dashed curves of similar dependences derived in [4] for the models of a sphere which first expands 
with constant velocity and then instantly stops. It is seen that  the method of self-consistent dynamics refines 
the data on the energetics of the cloud-magnetized medium interaction (by approximately a factor of 2 for 

= 0 .8 ) .  

Figure 2 shows t ime dependences of the relative values of the 0 and p components of magnetic 
perturbations (B = rotA) at the distance r = 3 for/3 = 0.01, 0.21, and 0.41: 

bo= (B-B0)-e0 1 f ' 2 f " 1  ( B - B 0 ) - e p =  f /3r 2" 
B0"e0 = ~  ~ + / ~  + /~-~- ] ,  bp=  B0 . ep  r 

In the simplified model [4], the amplitudes of the signals axe much larger (for example, for/~ = 0.5 and r = 3, 
the amplitudes are 6 times larger). With increase in/3, the oscillatory character of the signals is manifested 
increasingly, in contrast to the monotone character in the vacuum limit (see curves for ~ = 0.01). This fact 
is connected with the existence of the quasistatic (/~r << 1), transient (~r ,~ 1), and wave (~/r >> 1) zones of 
perturbation formation. To check the calculation accuracy, the law of energy conservation was monitored and 
to do this, we constructed curves of time variation of the work performed by the sphere W(T), the energy of 
the currents induced in the cloud, EI(~'), the radiated MHD energy ER(7"), and the sum E1 + ER for various 
values of/3 (for/3 = 0.8 in Fig. 3). For convenience, all the curves are reduced to the common origin, namely, 
the moment of arrival of a signal at the point of observation. The exact equality W = ~1 + ER should occur 
in the limit of completion of the transient process of formation of a radiation field (~ - / ~ r  >> 1). It is obvious 
that in the absence of a medium (/~ --+ 0), the work of expansion of an ideally conducting body of arbitrary 
shape with a quiescent center of inertia in a magnetic field /30 = const coincides with the energy of the 
induced currents. The algorithm has an error caused by the error in keeping the indicated balance. This error 
becomes noticeable with increasing/3, but, nevertheless, it does not exceed 5% of the value of W in the range 
considered, 0 < /3  < 0.9. 
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Figure 4 shows how impor tant  is the inclusion of the factors of the pressure and medium-induced field 
amplification balance on the sphere surface. Curve 1 was calculated by means of the "full" model (/3 = 0.8 
and r = 3), curve 2 was plot ted with a decrease in the second term in (3) by a factor of 1000, and curve 
3 was constructed for Q = 3/2 = const. Clearly, the simplified models of both types give rise to a pronounced 
increase in the signal ampli tude and, hence, the overestimation of the radiation power. 

R e c o v e r i n g  t h e  I n i t i a l  Ve loc i t y  a n d  E n e r g y  of  a P l a s m a  C l o u d  on  t h e  Bas i s  o f  M a g n e t i c  
Signals .  Quasistatic Method. If a magnetic probe is positioned in close proximity to the  cloud (p << VATb), 
we may ignore radius-dependent terms, namely, r -2 and r -1, in the expressions for perturbations.  The thus 
obtained near-zone approximation holds for fl << l / r ,  where r > 1 and fl << 1 or for ~ << 1/(r  - 1), where 
/~ < 1. In this case, to find the  relation between the signal characteristics and the dynamic parameters of the 
cloud, it is possible to use the  "vacuum" model into which the magnetosonic model is transformed for/~ --+ 0. 
In an ideal MHD approximation, the dynamics of a plasma sphere in a vacuum magnetic field is described by 
the equation [3] 

l - g . -  . (7) 

The signals of the magnet ic  probe removed from the cloud AB( t )  and AFt = dB/d t  are uniquely determined 
by the sphere dynamics. The  derivative with respect to the field 

dB 1 da a R~bF ' F = 1 [3ep-(B0" ep) - B0] 
d r -  2 d r  -~ 

reaches a max imum at the  moment  t = t ,  when the value of da3/dr, which is proportional to the  power of 
energy losses by the cloud, is also maximal. The ext remum condition d2aS/drZ = 0 gives an equation for the 
relative radius of the sphere a ,  at the moment  r, = t,/Tb. We can derive this equation by differentiating Eq. 
(7) and equating it to zero. As a result, we have a,  = 0.75; after substi tuting this value into (7), we find 
the instantaneous velocity da , /dr  = ~, = 0.53 in terms of V0. The  characteristic t ime necessary to reach the 
maximum loss power is 

7 do 
r ,  = 0 ~/1 - ( 4 / 5 ) a  s - ~ = 0.92. 

The coefficients a , ,  ~,, and r ,  are constants of the model, which are necessary to define the plasma motion 
parameters on the basis of magnet ic  signals. 

The limiting radius of deceleration ( / ~  = amRb) is determined by the relation 

Rm = [ - 2 ( A B m ) 2 / ( A B m  �9 F)] 1/3, 

where ABm the maximum-in-ampli tude field of perturbations,  which is recorded by a probe (the "amplitude 
of saturation"). 
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The thus found effective radius of deceleration R~ can be less than Rb (a,~ < 1) for two reasons: 
because of the presence of a background medium as the parameter/3 increases and a marked penetration 
of the field into a plasma during deceleration [2]. The latter causes a portion of the converted energy of the 
directed (radial) motion to convert to the "heat," whose contribution to the full induced magnetic moment can 
be decreased relative to the contribution of the same amount of energy in the initial form of motion, because 
this contribution depends on the particular shape of the occurring particle distribution over the densities and 
velocity components and also on the degree of inheterogeneity of the perturbed field in the cloud [11], i.e., it 
is determined by the special features of magnetic diffusion. An important example of the nonunique energy 
redistribution is the phenomenon of polarized jets formed at the end of the deceleration stage in developing 
the flute instability [2]. As a consequence, the quasistatic energy of the induced current, calculated using the 
measured "saturation amplitude" AB,,, from the expression 

1 (AB,,,)2Bo 2 
s  2 ABm.F ' (8) 

will be smaller [12] that  its ideal estimate (4/5)~0 [3]. The influence of diffusion on the results of analysis 
can be weakened if one employs an approach effectively applied in processing the data obtained by magnetic 
probes in experiments [13] on generation of quasispherical clouds of a laser plasma in a vacuum homogeneous 
field on the KI-1 facility [2]. The approach is based on the fact that  at the initial stage from t = 0 to t ~ t , ,  
the observed diffusion is small, and the motion occurs in good agreement with the model of a superconducting 
sphere. From the above relations follow formulas for determination of Rb, the initial energy, and the velocity 
on the basis of the measured time t,  and the maximum derivative of the signal IB, (for t = t,): 

( "2 B.2 = (9) R b =  2 t ,  . B ~ ' B *  ~ ' / s  2 l I ~ t .  

- "9 ~, B , .  ra2,a./ ' I~ = - ]  13.. FRba.2a, ' 3 r ,  

Figure 5 shows t ime dependences of the full amplitude of the field perturbation and its derivative 
(points 1 and 2, respectively), which were measured by a probe in the plane of the magnetic equator at a 
distance of 18.6 cm from the laser target located in the field/3o = 780 G (t, = 0.45 psec and B, = 33 G/psec). 
Using formulas (9), we find effective values of the parameters Rb = 6.7 cm, E0 = 6 J, and V0 = 13.6 cm/psec, 
which were used for calculation of theoretical dependences of the field and its derivative on time by the 
model of a superconducting sphere in vacuum (curves in Fig. 5). The calculated and measured signals almost 
coincide up to the moment 0.8 psec, which is close to 2t, -~ 2Tb. Thus, the approximation used holds at the 
major part of the deceleration stage: which makes it possible to estimate the discrepancy between the energies 
As = El -- (4/5)E0 = 0.7 J with the use of the found difference between the real "amplitudes of saturation" 
and the ideal amplitude equal to 2.5 G (Fig. 5). In the general case, a similar method of determining a portion 
of energy excluded from the magnetic interaction allows a more precise description of the character of energy 
transfer between an expanding plasma and an outer magnetized medium. 
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If the expansion is observed in the background with the known Alfv~n velocity VA, this method yields 
its effective value aaron0 < E0, which depends on the amount of radiated energy of MHD perturbations: 
s = (4/5)(1 - a3~)E0, instead of the full magnitude of the initial energy. The quantities ~R and s are 
recovered using the found value of/3 = Vo/VA with the use of the calculated dependences a,n(/3) (see Fig. 1) 
and s163 (curve 2 in Fig. 6). 

Transient-Zone Method. In the transient zone (13r ~0 1), it is necessary to use the results of the full 
magnetosonic model for solution of the inverse problem. It is convenient to pay attention to the leading peaks 
of the 0 and p signals with amplitudes b0 and bp, respectively (see Fig. 2). The peaks correspond to the 
initial stage of motion at which the effects that are not taken into account in the models and are mainly 
associated with the development of magnetic diffusion and flute instability are not able yet to be manifested 
to a considerable extent. This is primarily true for the peak be, which is before the peak bp on the times (from 
the moment of arrival of a signal) t < Tb, where, according to the experimental data given above, the shape 
of the signals is close to ideal. This peak is preferable for recovering the initial velocity of the sphere (the 
Mach-Alfv6n number). The peak of the p signal, which decreases as the inverse square of the distance and, 
therefore, is rather marked only in the transient zone, contains information on the energetics of deceleration. 
Since it is located on the times t < 2Tb, the degree of its possible distortion in real processes should be 
clarified by numerical simulation or experimentally. In observations outside the plane of the magnetic equator 
(0 # 1r/2), the following relations for the moment { = ?Tb in the peak of the O signal occur: 

ro = 2go + bp = a V " / ,  = - u -  

Here the quantity U is expressed via the measured derivative of the p signal with respect to the time dBp/dt. 
Using the function f ,  we can write it in the form 

dBp dbp 
+ 

r 

U =  dt Bo VA COs O = &l r \ r _' 

the derivatives of the function f with respect to 1/being calculated for r / =  ~" - Br; bp is the value of the p 
signal for ~" = #. Combining these relations, it is easy to show that there is a universal characteristic Ao that 
depends only on f~: 

^0 =/ al]"12/Ifl = r]/(ro + u). 

This characteristic is also determined via the measured amplitude parameters bs, bp, and U of the magnetic 
signal. This dependence was calculated (Fig. 1), and this offers the possibility of finding the desired parameter 

in experiments with the use of a magnetic probe. The relation As - (2bs)2/Ibpl holds for large values of 
the radius p, and, hence, signal processing becomes much simpler. This technique is poorly sensitive to 
measurement errors in bs and bp because of the fairly strong manifestation of the dependence of As on/~. 

The characteristic curve of the dependence of the instantaneous relative radius of the sphere a on/~ 
in the peak of the p signal was constructed similarly (see Fig. 1). It is possible to use directly the data of 
magnetic measurements on the basis of the dimensional equation for the radius (A = a r t )  

A 3 + p2rpA - 2bsp 3 = O, 

where Fp = bp + 2be is an experimentally found characteristic. 
In the p peak, we have Fp < 0 and, as an analysis shows, the equation fo r / i  has a unique root. If the 

parameter B is found using the described technique of signal processing in the 8 peak, one can determine the 
dimensionless radius a with the use of the curve in Fig. 1. Substituting the values of Fp and be measured in the 
p peak into a cubic dimensional equation and solving it, we find ,4. Finally, based on the relations Rt = P,/~z 
and s = B2ol~b/3, one can recover the values of the limiting radius of deceleration and the initial energy of 
the cloud. 

Based on model calculations, we considered examples of such recovery of the initial data. In particular, 
for the parameters of the direct problem/~ = 0.8,/30 = 200 (2, V0 = 57 km/sec, and E0 = 18.4 J (Rt = 24 cm), 
owing to the finite accuracy of its solution (see above) the error of determination of the unknown quantities 
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on the basis of the calculated signals at the point of observation 0 = 45 ~ and p = 72 cm was approximately 
5% for the velocity and 20% for the energy. 

Wave-Zone Method. If the probe is located in the wave zone (/3r >> 1 or p >> VATb), based on the 
recorded time variations in the signal amplitude ABe decreasing in inverse proportion to the first degree of 
distance, it is possible also to find the motion parameters/3 and go. In this case, the electrical field of a 
magnetosonic wave is 

E~= I OAr , ' . -VA ABe, 
c Ot -- c 

~hich corresponds to the power of radiation incident on a unit site 

de c E VA (ABe)2. 
dS = 47r xAB=~- 

The power falling on the entire surface of a sphere of radius p has the form 

" P = (2/3) (I/A/sin 2 0) #~2(AB0)2 , 

where 0 is the azimuth of probe location. Integration of the squared amplitude of a magnetic signal over the 

time of observation gives the radiated MHD energy ER =/P dr. 
#b 

The ratio a = ER/E0 depends only on/3 [see (6)]. In the wave zone, the product of the normalized 
amplitude of the signal in the 0 peak by the relative radius of probe location r (see the calculated curve 1 in 
Fig. 6) is also a function of/3: bor = {(/3). By measuring b0 = ABo/(Bo sin 0) and E/z, one can find Rb and/3 
with the use of the dependences a(/3) and ~(/3) as the system of two equations, namely, bop/R6 = ~(/3) and 

3gB/(Bo2 ) = a @ .  
It is obvious that  this method is most convenient under the full-scah conditions of a homogeneous 

rfiedium, because it requires measurement of only one component and is less sensitive to the signal shape in 
comparison with the transient-zone method. 

Discuss ion  of  S o m e  Res t r i c t ions .  The limits of applicability of the techniques considered are 
limited to conditions under which factors that are not taken into account in the magnetosonic model become 
important. This primarily refers to the degree of magnetization of a medium with respect to the parameter 
,a/fl , ,  where fl, = Z, eBo/ra,c is the gyrofrequency of the background ions and w is the frequency in the 
spectrum of cloud-generated perturbations. According to [4], the MHD-radiation spectrum has a maximum 
for wTb ~. 4, and, hence, the  quantity oac = 4/Tb acts as a characteristic frequency. We calculated the refined 
shape of the spectral dependence of the energy emitted to an element of the solid angle dfl (solid curves in 
Fig. 7) in the integration of system (4) for various values of the parameter/3 from the expression 

1 d2ER __~r2[Tfttexp(iwrl ) ]2. 
sin20dfldwTb i ~ dT/, 
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The maximum obtained is shifted to wTb "-, 2, because the deceleration occurs for the time ,,~ 2Tb, instead 
of ,-, Ta, as in the model of [4]. Therefore, the refined value is wc "~ 2/Tb, and, as calculations have shown, 
in practice it does not depend on/~. The frequency 4/Tb characterizes the upper spectral boundary at its 
half-height and does not depend on B as well. This spectral characteristic in [4] grows with increasing B (the 
dashed curve from [4] in Fig. 7 for/~ = 0.5) and becomes approximately lO/Tb for/~ = 0.9. 

The approach used corresponds to the zero approximation w/O. ~ 0 (the frequencies of plasma 
oscillations of the ions and electrons are assumed to be much higher than the gyrofrequency f/,), in which 
the tensor of dielectric permeability is reduced to a diagonal shape, and the expansion does not occur. 
Written via the cloud (s and 1~) and medium (B0, m. ,  and Z.) parameters, the magnetization condition 
we/f/, << 1 is of the form 5.103 (mHZ,/m.) (3EoBo)l/3/Vo >> 1, where mH is the mass of the hydrogen 
ion, in the Ganssian system of units. With certainty, this condition is satisfied in the hydrogen background 
of the near cosmos (/30 "~ 0.01-0.001 G) for typical parameters of, for example, an antiasteroid explosion 
[6] (E0 "~ 10-100 megatons and ~ ,-- 10-100 km/sec). At the same time, in practice it is difficult to ensure 
a similar separation of the gyrofrequency and the perturbation spectrum in a laboratory experiment. This 
indicates the necessity to check the influence of the magnetization parameter w J f / .  < 1 (for example, by 
means of the hybrid model of [14]) for/~ < 1 from the viewpoint of the possible distortion of the shape of 
magnetic signals and variation of the energy characteristics of the cloud-medium interaction. 

Another important restriction is connected also with the parameter w/f/. ,  and, in addition, it depends 
on the choice of the point of observation. In the first nonzero approximation relative to the small parameter 
w/f/ . ,  cloud-generated magnetosonic waves excite Alfv~n perturbations in a medium. These waves propagate 
along the field with the same amplitude [4]. For this reason, the Alfv~n component can distort the shape of 
signals on a fairly large radius (p >> P~///) at the angle of observation P~/p < 0 << 1 [8]. To decrease the 
sensitivity to such noise, it is preferable to apply the wave-zone method described above in the equatorial 
plane. This is more effective, because the perturbation amplitude is maximum for 0 = lr/2 (p = const). The 
lower sensitivity of the transient- and near-zone techniques is connected with the fact that they are used at 
close distances, where the relative contribution of the magnetosonic mode remains determining. 

In concluding, it is noteworthy that the new appros~es to recovering the dynamic parameters of an 
explosive plasma have been developed in the present paper on the basis of the signals of remote magnetic 
probes under the conditions of magnetized background. The possibility of their effective application in laser- 
plasma cloud generation experiments in a vacuum homogeneous magnetic field has been shown. In our opinion, 
the dependence of the relative amount of radiant energy on the Mach-Alfv~n number that we have found 
is an important result, because it refines the estimates of [4]. The magnetosonic model of expansion of a 
"superconducting" spherical cloud has been calculated with allowance for all the basic factors and with a check 
of the energy balance for the first time. The position of the maximum and spectral width of the generated 
perturbations in relative units has been found to be almost independent of the Mach-Alfv6n number. One 
can conclude that these data are not sufficient to find, in particular, the initial velocity of the cloud, and, 
consequently, an amplitude analysis of magnetic signals is of fundamental importance. 
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